Forest Reflectance and Transmittance FRT User Guide

Version FRT23, 04.2025

A. Kuusk and T. Nilson

Contents

Ał	ostract		3				
1	Introduction						
2	ayout of the model	3					
3	Model components						
	3.1 Sing	gle scattering in tree crowns	4				
	3.2 Sing	gle scattering on ground vegetation	9				
	3.3 Diff	use fluxes	9				
	3.4 Leaf	f optics	11				
	3.5 Sky	radiation	11				
4	Transmit	tance of a forest canopy	12				
5	Inversion	of the model	13				
6	Conclusio	on	13				
Re	eferences		15				
Aŗ	ppendix		17				
A	General d	description of the computer code	17				
В	The usage	е	19				
	B.1 The	stand file	19				
	B.2 A sa	ample file of the second tree class	26				
	B.3 Bark	and trunk reflectance spectra	27				
C	A sample	output file	27				
D	Description	on of the subroutines	29				
	D.1 Subi	routines of general use	29				
	D.2 Stru	cture modules	30				
	D.3 Opti	cs modules	32				
	D.4 Refle	ectance of ground vegetation (rmsub.f)	32				

R	eferen	ces	35
	D.8	Optimization modules	34
	D.7	Atmosphere radiative transfer model 6S (sixsd.f)	33
	D.6	LIBERTY - the leaf optics model	33
	D.5	PROSPECT - the leaf optics model	33

Abstract

A directional multispectral forest reflectance model has been developed in the group of vegetation remote sensing at Tartu Observatory, Estonia. The early version of the forest reflectance model by Nilson (1991) has been extensively modified. The modified leaf optics models PROSPECT by Jacquemoud et al. (1996) and LIBERTY by Dawson et al. (1998), atmosphere radiative transfer model 6S by Vermote et al. (1994, 1997), and homogeneous two-layer canopy reflectance model ACRM by Kuusk (2001) have been incorporated into the model. The new model works in the spectral region 400-2400 nm with the same set of input parameters, the spectral resolution is 1 nm. Any Sun and view directions are allowed. The following manual presents the modification FRT23 of the model, the 2025 version. While the main principles of the model are those of the 2013 version (FRT13), there are some changes in the computer code, and the format of input files is changed.

1 Introduction

The transfer of solar radiation within forest stands is a rather complex process. We need models to understand how the reflected signal is formed and which are its most important driving factors. In addition, to create a satellite or aerial imagery-based forest management system, forest reflectance models capable of acting as an interface between the images and forestry databases are required. These models should be able to make maximum use of the forestry data contained in the database and allow to simulate the optical images, e.g. in terms of standwise ground-level reflectance factors. Originally, the forest reflectance model described in Nilson and Peterson (1991) has been derived just from these starting points. The previous version of the model needed several improvements. First of all, to make use of multiangular remote sensing data, the model should be modified into a multiangular version. Second, a multispectral version of the model is required to study the relations between leaf biochemical and high spectral resolution reflectance data. Several improvements were also needed to create a more user-friendly version of the model and to introduce some changes in the calculation algorithms. For these purposes, a considerable modification of the original model was undertaken.

2 General layout of the model

The forest reflectance model may be classified as a hybrid-type model, including the properties both geometrical and radiative transfer equation-based models. Tree crown envelopes are modeled as ellipsoids of rotation or cones in the upper and cylinders in the lower part (Fig. 1). Leaves and branches are uniformly distributed in the crown.

Several tree classes of different size and/or species are possible (Fig. 1). Within each class, trees are considered identical.

A homogeneous layer of vegetation is present on the ground surface.

The radiances of the forested scene components – tree leaves/needles, branches and stems, ground vegetation, and soil – are estimated with the help of geometrical and radiative transfer concepts. Special attention is paid to the adequate modeling of single scattering reflectance components, whereas reflectance caused by multiple scattering of radiation in the canopy is more roughly modeled.

The directional spectral reflectance of a forest stand in the given direction r_2 is calculated as a sum of the single scattering reflectance $\rho_I(r_1, r_2)$ and diffuse reflectance $\rho_D(r_2)$,

$$\rho(r_1, r_2) = \frac{I_{\lambda}}{Q_{\lambda}} \rho_I(r_1, r_2) + \rho_D(r_1, r_2), \qquad (1)$$

where $I_{\lambda} = I_{\lambda}(\theta_1)\cos(\theta_1)$ is direct down-welling flux, and $Q_{\lambda} = I_{\lambda} + D_{\lambda}$ is the total down-welling flux, D_{λ} is diffuse downwelling flux, r_1 and r_2 are unit vectors in the Sun and view direction, respectively, θ_1 is the Sun zenith angle.

The single scattering reflectance factor $\rho_I(r_1, r_2)$ accounts for the single scattering from tree layer foliage and stems $\rho_{CR}^1(r_1, r_2)$, and single scattering from ground vegetation $\rho_{GR}^1(r_1, r_2)$,

$$\rho_I(r_1, r_2) = \rho_{CR}^1(r_1, r_2) + \rho_{GR}^1(r_1, r_2). \tag{2}$$

Diffuse reflectance $\rho_D(r_1, r_2)$ accounts both for the multiple scattering of radiation and for the diffuse radiance of scattered/reflected sky radiation D_{λ} .

The model works in the optical domain of radiation, 400-2400 nm, spectral resolution is 1 nm.

3 Model components

3.1 Single scattering in tree crowns

The first-order reflectance component $\rho^1_{CR}(r_1, r_2)$ is calculated separately for all tree classes,

$$\rho_{CR}^{1}(r_{1}, r_{2}) = \sum_{j=1}^{m} \rho_{CRj}^{1},$$

$$\rho_{CRj}^{1} = \lambda_{j} \int \int \int \int u_{j} \Gamma_{j}(r_{1}, r_{2}) p_{00j}(x, y, z; r_{1}, r_{2}) dx dy dz / \cos \theta_{1}$$
(3)

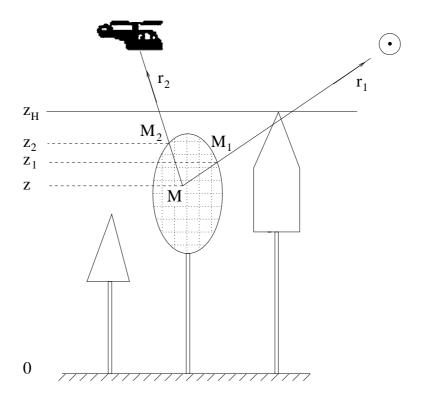


Figure 1: Deriving the first-order scattering component.

Here λ_j is the number of trees of the j th class per unit ground area, $u_j=u_j(x,y,z)$ is the foliage area volume density within a tree crown, $\Gamma_j(r_1,r_2)$ is the scattering (area) phase function of the canopy medium, $p_{00j}()$ is the bidirectional gap probability of two simultaneous free lines-of-sight in directions r_1 and r_2 from the point M=(x,y,z) within a crown of the j th tree class (Fig. 1), V_j is the spatial region corresponding to the crown envelope. Integral (3) is calculated numerically using 3D quadrature.

The scattering phase function $\Gamma_j(r_1, r_2)$ in formula (3) is the sum of diffuse $\Gamma_{j,D}(r_1, r_2)$ and specular $\Gamma_{j,sp}(r_1, r_2)$ scattering,

$$\Gamma_j(r_1, r_2) = \Gamma_{j,D}(r_1, r_2) + \Gamma_{j,sp}(r_1, r_2). \tag{4}$$

Leaves of broadleaf species are supposed to be bi-Lambertian, foliage element reflection ρ_{Lj} and transmission τ_{Lj} coefficients are calculated with the PROSPECT submodel (Jacquemoud and Baret, 1990). Leaf refractive index n_{Lj} is a given tabulated function of wavelength. Foliage orientation is described by the two-parameter elliptical leaf angle distribution (LAD) (Kuusk, 1995a),

$$g_L(\theta_L) = B_g / \sqrt{1 - \epsilon^2 \cos^2(\theta_L - \theta_m)},\tag{5}$$

where θ_L is leaf inclination, θ_m is the modal leaf inclination, and ϵ is the eccentricity of the LAD which determines the shape of the LAD, B_g is a normalizing factor. As the sensitivity range on the LAD eccentricity is very close to the limit value $\epsilon = 1$, the parameter $e_L = -\log(1 - \epsilon)$ is used as the input parameter of FRT.

On these assumptions, the scattering phase function $\Gamma_{j,D}(r_1, r_2)$ in Eq. (4) may be calculated by analytical formulas in case of a few exceptional LAD (spherical, horizontal, vertical LAD, or fixed leaf angle) (Nilson, 1991), or by approximation formulae in case of elliptical LAD (Kuusk, 1995a).

For conifer species the asymmetric Henyey-Greenstein phase function is used (Lenoble, 1977),

$$\Gamma_{HG}(\gamma) = \frac{1 - g^2}{\sqrt{(1 + g^2 - 2g\cos(\gamma))^3}},$$
(6)

where g is the asymmetry parameter, $-1 \le g \le 1, \gamma$ is the angle between sun and view directions.

Optical parameters are averaged over all foliage elements (leaves, branches) according to their share in the total foliage area.

The bidirectional gap probability p_{00j} is defined as a product of two independent probabilities

$$p_{00j} = p_1 \, p_2 \tag{7}$$

 p_1 being the within-crown level bidirectional gap probability and p_2 that of the between-crown level. In calculations of the bidirectional gap probability p_1 , results from (Kuusk, 1991) for the crown of a single tree are applied. The mutual shading of needles in shoots and the characteristic linear dimension of foliage elements l_{sh} are accounted for.

The between-crown gap probability, p_2 , in Eq. (7) stands for the parts of the lines-of-sight that lie outside the crown of interest, i.e. from the point $M_1(x_1,y_1,z_1)$ until the upper boundary of the forest canopy in the solar direction and from $M_2(x_2,y_2,z_2)$ in the view direction (Fig. 1). In this version of the model the calculation of the between-crown gap probability p_2 is modified. Instead of calculation of p_2 separately for every tree class a mean tree class is built, and the gap probability p_2 is calculated in assumption that all trees in the stand have the mean crown and mean foliage density of mean optical properties. The radius of the mean crown is equal to the mean radius of tree crowns. The trees of mean tree class have ellipsoidal crowns, the radius of which is equal to the mean radius of tree crowns. The length of the mean crown is determined by the vertical distribution of foliage in the stand. In order to avoid artefects caused by exceptiona tree classes, the wings of the foliage distribution are cut. The level of cutting is set in the source code of the module strmean.f, the parameter plevel.

Based on (Nilson, 1977) the between-crown gap probability p_2 is calculated as follows:

$$p_2 = a_s(z_1, \theta_1) a_s(z_2, \theta_2) C_{HS2}(z_1, z_2, l_{12}, r_1, r_2),$$
(8)

where $a_s(z,\theta)$ is the average proportion of gaps in the forest canopy at the height z in the direction θ , and C_{HS2} is the hot-spot correction factor for between-crown shading,

$$C_{HS2}(z_1, z_2, l_{12}, r_1, r_2) = \exp(\lambda c_m S_{cm}(z_1, z_2, l_{12}, r_1, r_2) p_{0j},$$
(9)

 λ is the total number of trees, $S_{cm}(z_1, z_2, l_{12}, r_1, r_2)$ is the area of the common part of the crown envelope projections in solar and view directions, corresponding to the heights z_1 and z_2 and the horizontal distance l_{12} ; p_{0m} is the joint probability of gap occurrence within the mean tree crown when viewed simultaneously from a point at the height z_1 in the solar direction r_1 and from another point at the height z_2 in the view direction r_2 , horizontal distance of the points being l_{12} . The parameter c_m is introduced to account for the deviations in the tree distribution pattern from the Poisson distribution, see Eq. (17).

The gap probability $a_s(z, \theta)$ is calculated on the assumption of the binomial distribution of trees (Nilson, 1977),

$$a_s(z, \theta_r) = \exp(-\lambda [b_{1j}(z, \theta_r) S_{crown,m}(z, \theta_r) + S_{trunk,m}(z, \theta_r)]), \qquad (10)$$

where λ is the total numer of trees, $b_{1m}(z,\theta_r) = \ln[1 - (1 - a_{1m}(z,\theta_r))(1 - c_m)]/(1 - c_m)$,

 $S_{crown,m}(z,\theta_r)$ is the area of crown envelope projection for mean tree class at the level z, and $S_{trunk,m}(z,\theta_r)$ is the area of trunk projection of the mean class at the level z, $a_{1,m}(z,\theta_r)$ is the gap probability in crowns in the direction θ_r at the level z, θ_r is the polar angle of the view vector r_i , i=1,2. The area of trunk projection $S_{trunk,m}(z,\theta_r)$ is calculated using trunk tapering curves by Ozolins (1988). The function $a_{1m}(z,\theta_r)$ is shown in Eq. (11),

$$a_{1m}(z,\theta_r) = \langle \exp(-u_m G(\theta_r)l(z,\theta)) \rangle . \tag{11}$$

Angle brackets mark averaging over the crown projection area $S_{crown,m}(z,\theta_r)$, $l(z,\theta)$) is the path length in the mean crown at level z, $G(\theta_r)$ is the Ross-Nilson geometry function. In case of spherical LAD $G(\theta_r)=1/2$, for other LAD-s the approximation by Kuusk (1995a) are used. As the crown envelopes are supposed to be surfaces of revolution, the between-crown gap probability $a_s(z,\theta_r)$ does not depend on the azimuth. Grouping and/or regularity of the stand is described by a grouping parameter c_m , $c_m < 1$, $c_m = 1$, and $c_m > 1$ correspond to a regular, random, and clumped pattern of trees, respectively. As the stem coverage (basal area) is very small, unlike the crowns, the stem position pattern is supposed to be random.

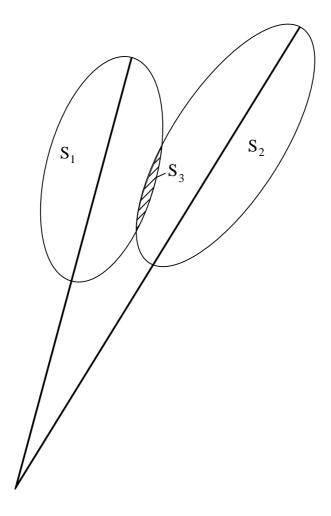


Figure 2: Calculation of the overlapping of crown projections.

In Eq. (10), the expression $\lambda[S_{crown,m}(z,\theta_r)+S_{trunk,m}(z,\theta_r)]$ stands for the mean coverage of ground by the shadows cast by crown envelopes and trunks of meab trees, if the direction of sunrays coincide with the view direction θ_r . It is the effective coverage that should appear in the exponent of Eq. (10). The mean coverage should be diminished, because the tree crowns are supposed to be semi-transparent, and modified to account for the tree distribution pattern effect. The two effects of single-crown transparency and of the tree distribution pattern on the between-crown canopy gap fraction are introduced by the parameter $b_{1m}(z,\theta_r)$. Note that $b_{1m}(z,\theta_r)=1-a_{1,m}(z,\theta_r)$, if $c_m=1$.

The overlapping of crown projections in Sun and view directions $S_{cm}()$ (Fig. 2), which is needed for the calculation of between-crown level bidirectional gap probabilities, can be calculated in case of ellipsoidal crowns and the approximation of crown projections by circles as in FRT13 is not needed.

Another modification is in the calculation of the gap probability in the mean crown $a_{1,m}(z,\theta_r)$,

Eq. (11). Instead of using the mean path length in the crown, the transparency in the direction θ , $\exp(-u_m G(\theta_r)l(z,\theta))$ is averaged over the tree crown projection.

Other components of the version FRT23 are equivalent to the version FRT13.

3.2 Single scattering on ground vegetation

The two-layer homogeneous canopy reflectance model ACRM by Kuusk (2001) is applied for the calculation of the bidirectional reflectance of ground vegetation. Input parameters of the ACRM are the leaf area index (LAI), leaf size, two leaf angle distribution parameters, the set of biophysical parameters (PRSOPECT parameters) for two layers of ground vegetation, and weights of Price's functions for the calculation of the soil reflectance spectrum. The probability of seeing sunlit ground vegetation is calculated as the p_2 in Eq. (8) for the ground surface, $z_1 = z_2 = l_{12} = 0$.

3.3 Diffuse fluxes

Diffuse fluxes of multiple scattering and of diffuse sky radiation are considered in four flux approximation like in the SAIL model (Verhoef, 1984) and in the ACRM model (Kuusk, 2001). Four differential equations define four fluxes: vertical fluxes up E_+ and down E_- , a direct solar flux E_s , and a flux associated with the radiance in the direction of observation E_o ,

$$dE_{+}/dz = -au_{L}E_{+} + \sigma u_{L}E_{-} + s'u_{L}E_{s}$$

$$dE_{-}/dz = -\sigma u_{L}E_{+} + au_{L}E_{-} - su_{L}E_{s}$$

$$dE_{s}/dz = ku_{L}E_{s}$$

$$dE_{o}/dz = vu_{L}E_{-} + uu_{L}E_{+} - Ku_{L}E_{o}$$

$$(12)$$

The SAIL coefficients a, σ , s', s, k, v, u, and K are expressed using the G-function and leaf reflection and transmission coefficients ρ_L and τ_L . Equations (12) can be solved analytically, the general solutions for E_+ , E_- and E_s are given, e.g. in (Bunnik, 1978).

The diffuse component of reflectance ρ_d is a sum of two components, related to tree layer and to ground vegetation, ρ_d^{trees} and ρ_d^{gr} , respectively,

$$\rho_d = \rho_d^{\text{trees}} + \rho_d^{\text{gr}},\tag{13}$$

where

$$\rho_d^{\text{trees}} = SQ r_{so} + (1 - SQ) r_{do} +
+ [SQ (p_1 r_{sd}^{\text{gr}} + t_{sd} r_{dd}^{\text{gr}}) + (1 - SQ) t_{dd} r_{dd}^{\text{gr}}] t_{do} / (1 - r_{dd} r_{dd}^{\text{gr}})$$
(14)

Table 1: Scattering operators of the tree layer

Definition	Bour	dary conditions		
$r_{dd} = E_{+}(0)/E_{-}(0)$	$E_s(0) = 0,$	$E_{+}(-1) = 0,$	$E_{-}(0) = D_{\lambda}$	
$t_{dd} = E_{-}(-1)/E_{-}(0)$	- ()	$E_{+}(-1) = 0,$. ,	
$r_{sd} = E_{+}(0)/E_{s}(0)$	$E_s(0) = I_{\lambda},$	$E_+(-1)=0,$	$E_{-}(0) = 0$	
$t_{sd} = E_{-}(-1)/E_{s}(0)$	$E_s(0) = I_{\lambda},$	$E_+(-1) = 0,$	$E_{-}(0) = 0$	
$r_{do} = E_o(0)/E(0)$	$E_s(0)=0,$	$E_+(-1)=0,$	$E_{-}(0) = D_{\lambda}$	
$t_{do} = E_o^-(-1)/E(0)$	$E_s(0) = 0,$	$E_+(-1) = 0,$	$E_{-}(0) = D_{\lambda},$	$E_o^-(0) = 0$
$r_{so} = E_o(0)/E_s(0)$	$E_s(0) = I_{\lambda},$	$E_+(-1)=0,$	$E_{-}(0)=0,$	$E_o(-1) = 0$

and
$$\rho_d^{gr} = \left[SQ(p_1 \, r_{sd}^{gr} \, r_{dd} + t_{sd}) + (1 - SQ) \, t_{dd} \right] r_{ds}^{gr} \, p_2 \, / \, (1 - r_{dd} \, r_{dd}^{gr}). \tag{15}$$

Here SQ = I_{λ}/Q_{λ} , $p_i = p(r_i)$ is the gap probability in direction r_i , $r_{sd}^{\rm gr}$, $r_{ds}^{\rm gr}$ and $r_{dd}^{\rm gr}$ are the directional-hemispherical, hemispherical-directional, and hemispherical-hemispherical reflectance of ground vegetation, respectively. The ground vegetation reflectances $r_{sd}^{\rm gr}$, $r_{ds}^{\rm gr}$, and $r_{dd}^{\rm gr}$ are calculated by integrating the ACRM model over hemisphere by view, incident, and both directions, respectively.

The scattering operators of the tree layer r_{so} , r_{do} , t_{do} , t_{sd} , and t_{dd} are defined in Table 1 where $D_{\lambda} = Q_{\lambda} - I_{\lambda}$.

When calculating diffuse fluxes, the plant material is supposed to be distributed homogeneously in the horizontal, no layers, no trees, no branches, no shoots, and driving parameters are determined as averages approximating the behavior of the canopy in bulk. The effective foliage area index value LAI_{eff} is used in the calculations of diffuse fluxes. LAI_{eff} is calculated from the gap probability in a given direction, it depends on the G-function of foliage and on the tree distribution pattern (clumping/regularity). As the G-function is almost invariant relative to leaf orientation at zenith angle 40° (Ross and Nilson, 1968), the effective LAI is calculated from the gap fraction at $\theta_0 = 40^{\circ}$,

$$LAI_{eff} = \frac{\sum_{j} (\kappa_{cl,j} LAI_j + BAI_j)}{\Omega_E},$$
(16)

where

$$\Omega_{E} = \frac{\sum_{j} (\kappa_{cl,j} LAI_{j} + BAI_{j})}{\cos \theta_{0} \sum_{j} \lambda_{j} S_{crown,j}(\theta_{0}) c_{j}(\theta_{0})},$$

$$c_{j}(\theta_{0}) = \frac{-\ln (1 - (1 - a_{1j}(\theta_{0})) (1 - GI_{j}))}{1 - GI_{j}}.$$
(17)

Here $\kappa_{cl,j}$ is the clumping coefficient of leaves/needles in a shoot of the tree class j, BAI_j is the branch area index, θ_1 is the Sun zenith angle, and $a_{1j}(\theta_1)$ is the gap probability in the Sun direction in crowns of the tree class j, GI_j is the Fisher's grouping index - the relative variance of the number of trees in the area $S_{crown,j}(\theta)$. The effective value of the foliage area index $LAI_{eff}^{(mult)}$ is calculated from the assumption that the gap fraction in the direction of sunrays as calculated by means of Eq. (10), and the modified exponential formula, as proposed in Chen and Cihlar (1996), should be equal. Thus, Ω_E could be interpreted as the 'clumping index caused by structures larger than a shoot'.

3.4 Leaf optics

Leaf optics models PROSPECT (Jacquemoud and Baret, 1990) or LIBERTY (Dawson et al., 1998) can be used for the calculation of leaf reflectance and transmittance in tree crowns. There is no option of using the LIBERTY model for the ground vegetation. Both these models are modified so that the number of leaf constituents and names of files of their extinction spectra are listed in the input file. Extinction spectra of the models PROSPECT2 (Jacquemoud et al., 1996), PROSPECT3 (Fourty and Baret, 1998), and LIBERTY (Dawson et al., 1998) are available. The structure parameter of a single leaf in the PROSPECT model N is corrected to an effective value N_{eff} in order to account for the overlapping of leaves/needles in a shoot,

$$N_{eff} = N/\kappa_{cl} \,. \tag{18}$$

If compared with the PROSPECT model, the LIBERTY model has two additional parameters: average internal cell diameter and intercellular air space determinant (Dawson et al., 1998).

In the forest model input, the biochemical parameters are expressed as a fraction of the dry matter of leaves/needles. Using the described set of biophysical parameters, the whole spectrum of leaf reflectance and transmittance in the spectral range 400-2400 nm is calculated with the spectral resolution of 1 nm.

No good optical model for branch and trunk bark reflectance is available so far. Therefore, reflectance spectra of branch and trunk reflectance for every tree class are tabulated in separate input files.

3.5 Sky radiation

The wavelength-dependent relative share of direct and diffuse flux in incoming radiation is needed, Eq. (1). The atmospheric radiative transfer model 6S by Vermote et al. (1997) is involved for the calculation of incident radiation fluxes. Input parameters of the 6S model,

which are needed for the calculation of down-welling fluxes, are the percentage of four main aerosol components (dust-like, oceanic, water-soluble, and soot), and horizontal visibility or aerosol optical thickness at 550 nm τ_{aer}^{550} . The calculation of hemispherical-directional forest reflectance for sky radiation ρ_D is simplified. Instead of double integration over the hemisphere for incident directions, integration is performed in the perpendicular plane ($\varphi = 90^{\circ}$) only,

$$\rho_D(r_2) = \frac{\int_{2\pi} d(r_1)\rho_I(r_1, r_2)\mu_1 dr_1}{D_{\lambda}} \approx \frac{\int_0^{\pi/2} d(\theta_1, \varphi = \pi/2)\rho_I(\theta_1, \theta_2, \varphi = \pi/2)\mu_1 d\theta_1}{D_{\lambda}}, (19)$$

where $d(r_1)$ is the sky radiance in the direction $r_1 = (\theta_1, \varphi_1)$, $\mu_1 = \cos \theta_1$, and $D_{\lambda} = \int_{2\pi} d(r_1) \mu_1 dr_1$ is the diffuse down-welling flux from the sky.

4 Transmittance of a forest canopy

The same algorithms can be used for the calculation of downward radiances and fluxes under a forest canopy. The relative downward radiance in direction r_2 Sun being in direction r_1 is presented as the sum of three components:

$$t(r_1, r_2) = t_{CR}^1(r_1, r_2) + t_{sky}(r_1, r_2) + t_{CR}^M(r_1, r_2).$$
(20)

Here the downward radiance $t(r_1, r_2)$ is normalized as reflectance in Eqs (2, 1), $t_{CR}^1(r_1, r_2)$ is the radiance of single scattering from tree crowns, $t_{sky}(r_1, r_2)$ is the sky radiance, and $t_{CR}^M(r_1, r_2)$ is the radiance of multiple scattering on crowns. In the model the sky radiance $t_{sky}(r_1, r_2)$ only on the Sun zenith angle θ_1 .

Total transmittance of the tree layer $t_Q(r_1, r_2)$ is calculated as a ratio of the downward flux below the tree canopy to the incoming total flux Q_{λ} ,

$$t_Q(r_1) = \frac{I}{Q_{\lambda}} \left(t_{CR}^I(r_1) + a_s(0, \theta_1) \right) + \frac{D_{\lambda}}{Q_{\lambda}} \int_{2\pi} \left(a_s(0, r_2) + t_{CR}^I(r_2) \right) \cos(\theta_2) dr_2, \quad (21)$$

and diffuse transmittance of the tree layer $t_D(r_1)$ is calculated as a ratio of the downward flux below the canopy (direct sunrays blocked) to the incoming diffuse flux D_{λ} ,

$$t_D(r_1) = \int_{2\pi} \left(a_s(0, r_2) \cos(\theta_2) + t_{CR}^I(r_2) \right) \cos(\theta_2) dr_2 + \frac{I_{\lambda}}{D_{\lambda}} t_{CR}^I(r_1).$$
 (22)

Here $t_{CR}^I(r)$ is the scattering operator $I_{\lambda}(r) \to \text{(downward scattered flux)}$ for tree crowns.

5 Inversion of the model

Inversion of the model can be performed similar to Goel and Strebel (1983) or Kuusk (1991): a merit function is built, which has its minimum value when the best fit of measured and calculated reflectance data is reached. This way the complicated task of the solution of an array of non-linear equations for the estimation of model parameters is reduced to a more simple problem of the search of an extremum of a multidimensional function. In the merit function constraints are used in order to avoid the non-physical values of input parameters, and uncertainties of reflectance data and an expert estimate of parameter values are accounted for,

$$F(X) = \sum_{j=1}^{m} \left(\frac{\rho_j^* - \rho_j}{\epsilon_j} \right)^2 + \sum_{i=1}^{n} \left[(x_i - x_{i,b})^4 w_i^2 + \left(\frac{x_i - x_{e,i}}{dx_i} \right)^2 \right].$$
 (23)

Here $X=(x_1,x_2,...,x_n)$ is the vector of model input parameters, m is the number of the measured reflectance values ρ_j^* , ρ_j is the model reflectance value, ϵ_j is the error of the measured reflectance value ρ_j^* , x_i is a model parameter and $x_{i,b}$ its value on the boundary of the given region; w_i is a weight, $w_i=0$ in the given region $x_i\in[x_{i,min},x_{i,max}]$ and $w_i=$ const else, $x_{e,i}$ is the expert estimate of the parameter x_i , and dx_i is a tolerance for the parameter x_i which controls the sensitivity of the merit function on the expert estimate.

There is an option to use only absolute differences $(\rho_j^*-\rho_j)^2$ in the merit function.

In the inversion, the redundancy of data can be effectively used, i.e. the number of reflectance values inverted may be more than the number of model parameters subject to estimation. Anyway, as the number of model parameters is large, most of the model parameters should be fixed at 'best guess' values, and only a few parameters can be estimated simultaneously. Only the parameters of the first tree class can be estimated in the inversion.

6 Conclusion

The model can be used for the interpretation of multispectral and/or multiangular remote sensing data in the wide range of Sun and view angles in the whole optical domain 400-2400 nm. The proposed version of the model seems to be a good tool for different sensitivity analyses, e.g. an analysis of the dependence of BRDF, in particular near the hot spot, on the stand structural variables at different structural levels and on optical parameters of the canopy and understorey can be made.

The same computer code can be used both for direct and inversion modeling.

The model is coded in Fortran. The computational aspects of the model are detailed in the following appendices:

- General description of the computer code
- Example of inputs and outputs
- Complete description of the subroutines

Acknowledgements

The first version of the model was coded by Mrs. Anne Jõeveer. The Fortran text of the PROSPECT model was provided by Dr. S. Jacquemoud, the C text of the LIBERTY model was provided by Dr. T. Dawson, and the source text of the 6S model by Dr. E. Vermote. Absorption spectra for the PROSPECT model were provided by Dr. F. Baret.

References

- Bunnik, N.J.J., 1978. The Multispectral Reflectance of Shortwave Radiation by Agricultural Crops in Relation with their Morphological and Optical Properties, Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 175 pp.
- Chen, J.M. and Cihlar, J., 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images, *Remote Sens. Environ.*, 55(2):153-162.
- Dawson, T.P., Curran, P.J., and Plummer, S.E., 1998. LIBERTY modeling the effects of leaf biochemical concentration on reflectance spectra. *Remote Sens. Environ.* 65:50-60.
- Fourty, T. and Baret, F., 1998. On spectral estimates of fresh leaf biochemistry. *Int. J. Remote Sens.* 19:1283-1297.
- Goel, N.S. and Strebel, D.E., 1983. Inversion of vegetation canopy reflectance models for estimating agronomic variables. I. Problem definition and initial results using the Suits model. *Remote Sens. Environ.* 13:487-507.
- Jacquemoud, S., and Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. *Remote Sens. Environ.* 34:75-91.
- Jacquemoud, S, Ustin, S.L, Verdebout, J, Schmuck, G, Andreoli, G, and Hosgood, B., 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. *Remote Sens. Environ.* 56:194–202.
- Kimes, D.S., Knyazikhin, Y., Privette, J.L., Abuelgasim, A.A., and Gao, F., 2000. Inversion methods for physically-based models. *Remote Sens. Reviews*, 18(2-4):381-439.
- Kuusk, A., 1991. The hot spot effect in plant canopy reflectance. In: Myneni RB, Ross J, editors. *Photon-vegetation interactions. Applications in optical remote sensing and plant ecology.* Berlin: Springer, 139-159.
- Kuusk, A., 1994. A multispectral canopy reflectance model. Remote Sens. Environ. 50:75-82.
- Kuusk, A., 1995a. A fast, invertible canopy reflectance model, *Remote Sens. Environ.* 51(3): 342-350.
- Kuusk, A., 2001. A two-layer canopy reflectance model, *J.Q.S.R.T.*, 71:1-9.
- Kuusk, A., 1995b. A Markov chain model of canopy reflectance. *Agricult. Forest Meteorol.* 76:221-236.

- Kuusk, A. and Nilson, T., 2000. A directional multispectral forest reflectance model. *Remote Sens. Environ.* 72(2):244-252.
- Nilson T., 1977. A theory of radiation penetration into nonhomogeneous plant canopies. *The Penetration of Solar Radiation into Plant Canopies*, Acad. Sci. ESSR Report, Tartu, pp. 5-70. (Russian)
- Nilson T., 1991a. Approximate analytical methods for calculating the reflection functions of leaf canopies in remote sensing applications. In: Myneni RB, Ross J, editors. *Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology.* Berlin, Springer, 161-190.
- Nilson T., and Peterson U., 1991b. A forest canopy reflectance model and a test case. *Remote Sens. Environ.* 37(2):131-142.
- Ozolins, 1988: Standards for Forest Taxation in Latvia. Latvian Ministry of Forest Production and Management, Riga, 174 pp. (in Russian).
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992. *Numerical Recipes in FORTRAN*. *The Art of Scientific Computing*. Cambridge University Press, Cambridge, 963 pp.
- Ross, J., 1981. *The Radiation Regime and Architecture of Plant Stands*. Dr. W.Junk Publishers, The Hague, 391 pp.
- Ross, J. and Nilson, T., 1968. The calculation of photosynthetically active radiation in plant communities. In: *Regime of the Solar Radiation in a Vegetation Canopy*, Inst. Phys. and Astronomy, Acd. Sci. Est. SSR, 5-54.
- Verhoef, W., 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. *Remote Sens. Environ.* 16:125-141.
- Vermote, E., Tanré, D., Deuzé, J.L., Herman, M., and Morcrette, J.J., 1994. *Second Simulation of the Satellite Signal in the Solar Spectrum (6S). User Guide Version 0*, GSFC, NASA, 183 pp.
- Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997. Second simulation of the satellite signal in the solar spectrum, 6S An overview. *IEEE Trans. Geosci. Remote Sens.* 35(3):675-686.

Appendix

A General description of the computer code

A rough flowchart of the computer code is in Fig. 1, and the full call-tree in Fig. 2.

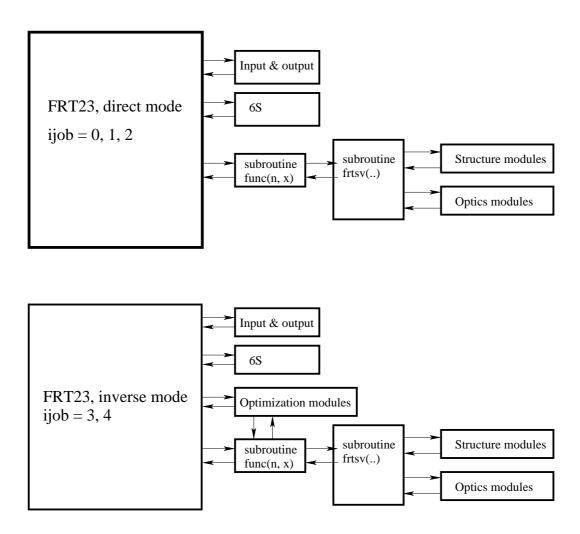


Figure 1: Flowchart of the computer code.

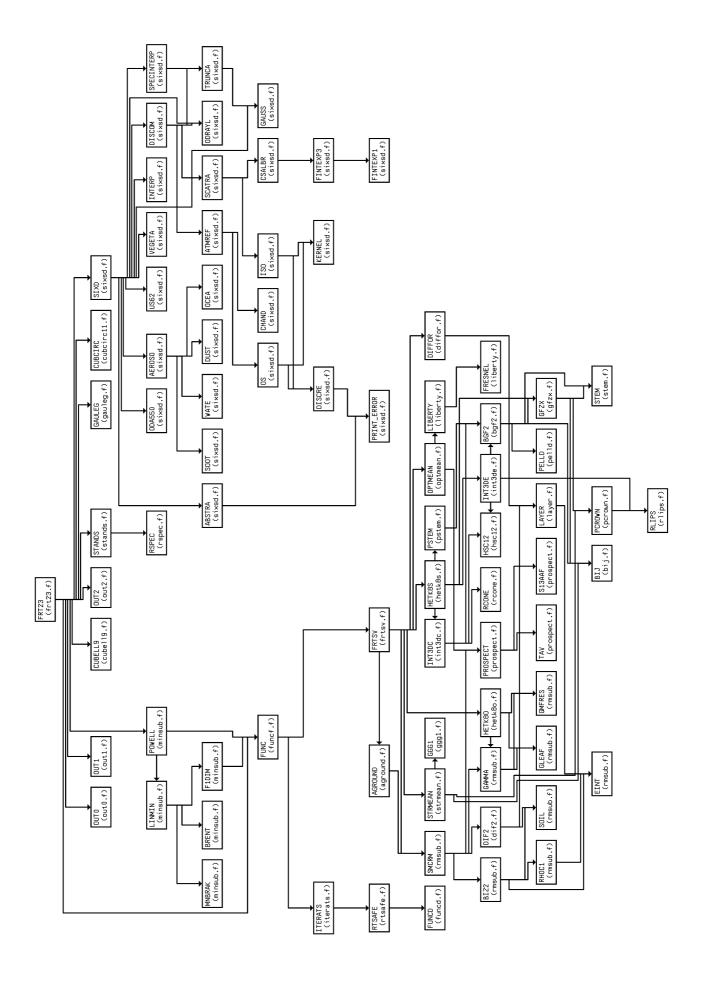


Figure 2: The call-tree of the computer code.

B The usage

The model is distributed as a compressed tar-archive of source texts, sample input and output files. It is recommended to create a separate directory for the model. Move the archive frt23?????tar.gz to this directory, extract the files and make

```
tar -xzvf frt23?????.tar.gz
make frt23 or make all
```

make clean removes object files,

make distclean removes object files and executables.

If you don't use the gfortran compiler then you should modify the makefile.

To run the code type on the commandline

./frt23 inputfile outputfile

If you do not give input and output files on commandline then you will be asked for the filenames.

Program frt23 calculates in direct mode forest reflectance and transmittance. There are options to perform calculations in various modes:

- a single run for given Sun and view angles and fixed wavelength
- reflectance spectrum for given view and Sun angles in the given range of wavelengths or for a list of spectral bands
- angular distribution of reflectance at given azimuth (relative to the Sun azimuth) for a given Sun zenith angle in the range of view polar angles $0...80^\circ$

Any view and Sun angle is allowed, however, do not use polar angles very close to 90°.

There are several input files required: a file of stand parameters (the stand file), the files of tree parameters for the second, third *etc* tree classes, files of absorption spectra for the leaf optics model, the files of refraction index spectrum and of Price' vectors, and files of bark and trunk reflectance spectra.

The same code is used for the inversion: parameters of the first tree class and/or ground vegetation can be estimated.

B.1 The stand file

The same stand file can be used both for the direct and inverse modes. Some input parameters are needed only in the inverse mode. These parameters are ignored in the direct mode and thus can be missing in the direct mode. The files of the second and other tree classes have the same structure as the stand file for the direct mode, the redundant data may be missing, in case they are present they are not used.

The input parameter ijob controls which task will be run:

ijob task

- a single run, Sun and view angles, and wavelength fixed to the first value of the respective parameter in the input file
- 1 calculate spectrum, Sun and view angles fixed
- 2 calculate angular distribution for theta = -80 .. 80°, Sun zenith, azimuth and wavelength fixed
- inversion of the model using BRF values in the fixed view direction, the initial guess, the recommended range of parameters, and errors of the reflectance values are accounted for in the merit function; BRF values at different wavelengths are used
- 4 inversion of the model, absolute differences in the merit function

ijob = 1

The spectral range is determined by the wavelength of the first spectral band, the wavelength increment dwl, and the number of spectral bands. The valid range of wavelengths is 400 - 2400 nm, spectral resolution 1 nm. The spectrum step is given by an input parameter dwl, if $dwl \leq 0$ then the list of wavelengths should be given.

ijob = 2

Program calculates the angular distribution of forest reflectance and transmittance in the range -80 .. 80° at a given azimuth (relative to the principal plane) and given increment in the view nadir angle. Negative polar angles correspond to the backscattering (hot-spot side), and positive polar angles - to the forward scattering.

ijob = 3

The code is run in inverse mode, n parameters of the first tree class which are listed in the key vector ll(n) are estimated by minimizing the merit function F(X), Eq. (23).

iiob = 4

As ijob = 3, except absolute differences are accounted for in the merit function F(X), i.e. $\epsilon = 1$ in Eq. (23).

Structure of the stand file

A sample stand file is printed in the page 21. Colons are used to mark comments, information after a colon is not used by the computer code. Below the sample stand file is commented linewise. The row of the input file is printed in bold. As the number of lines is not constant - it depends on the number of leaf components - the lines in comments are not numbered. The numbers in the right column are the position of the respective parameter in the vector of model parameters.

The first group of parameters describe the task and situation. The second group is the description of the first tree class. The third group is the description of the ground vegetation. In case of inversion the fourt group provides inversion parameters, and the fifth group the input reflectance data

In the files of other tree classes the lines of the first group are scrolled forward, tree parameters are in the same format as in the file of the first tree class, the other groups of parameters may be missing.

A sample stand file

```
'RAMI KS'
                                                       : data set name
49
                                                       : stand age
7
                                                       : # of size classes
*** files of refractive index and other tree classes ***
'refrind.dat' 'algl1' 'potr1' 'tico2' 'bepe2' 'algl2' 'piab3'
                : *ijob*: 0-single, 1-spectrum, 2-ad, 3,4-inversion (3-relat., 4-abs. differences)
4
                     .17 .0 .03
                                          : iaer, c(i) - aerosol data (6S)
0.
                .06
                                                       : v, tau_aer(550) - visibility (6S)
37.6
                                                       : Sun zenith
0.
                2.
                             7.
                                                       : view nadir angle, its increment, and view azimuth angle
                -1.
6
                                          : # of spectral bands and spectrum step
                                                       : spectral bands (TM)
486. 571. 650. 838. 1677. 2217.
                                                                                                            i
                xmin
                             xmax
                                          dx
'KS'
                                                       : species
t elli
                                                       : crown form
.0399
                .0001
                             .08
                                          .02
                                                       : stand density, m^{-2}
                                                                                                            1
                                                                                                            2
26.5
                10.
                             30.
                                          5.
                                                       : tree height, m
                                                                                                            3
9.0
                .5
.5
                                          9.
                             10.
                                                       : crown l, m; ell | con
0.
                             10.
                                          1.
                                                                      cylinder
                                                                                                            4
                .2
                                                                                                            5
1.7
                             5.
                                          .3
                                                       : crown radius, m
                2.
                                          5.
                                                                                                            6
20.7
                             25.
                                                       : trunk diameter, cm
                1.1
                                          8.
                                                       : m - total dry leaf weight, kg/tree
                                                                                                            7
3.014
                             5.
76.
                30.
                             120.
                                          60.
                                                       : SLW - leaf weight per area, g m-2
                                                                                                            8
0.
                0.
                             4.5
                                          .5
                                                       : eln3 - -ln(1 - eps)
                                                                                                            9
53.57
                0.
                             90.
                                          20.
                                                       : thm3 - modal leaf angle
                                                                                                           10
.2
                .05
                                          .2
                                                       : shoot length, m
                                                                                                           11
                             .6
0.15
                .01
                                          .05
                                                       : BAI/LAI
                                                                                                           12
                             1.
                                                                                                           13
1.3
                .6
                             2.8
                                          .05
                                                       : tree distr. param. GI_i
0.
                0.
                             .6
                                          .05
                                                       : H-G asymmetry (phase function)
                                                                                                           14
                                          .2
.2
.95
                .6
                             1.
                                                       : shoot shading coef
                                                                                                           15
                             1.2
.9
                .6
                                                       : refr. index ratio
                                                                                                           16
                                          .5
5.
1.658
                1.2
                             2.8
                                                       : leaf str. param. - PROSPECT N
                                                                                                           17
40.
                20.0
                             60.
                                                       : d_cell Liberty
                                                                                                           18
                                          .02
                                                                                                           19
0.03
                .01
                             0.06
                                                       : a_cell Liberty
'birchbr1.dat'
                                                       : file of branch reflectance
'birchtr1.dat'
                                                       : file of trunk reflectance
                                                       : leaf optics model
'prospect'
                                                       : # of leaf components
                                                  'waterb.dat': c1, % of SLW, component 1 'chlorp3.dat': c2, % of SLW, component 2
144.0
                50.
                             320.
                                          50.
                                                                                                           20
0.60
                .3
                             1.
                                          .2
                                                                                                           21
                                          20.
                                                                                                           22
                                                  'drymatter.dat' : c3, % of SLW, component 3
54.65
                34.
                             99.8
*** Ground vegetation ***
                                                       : LAI2_ground, upper layer
                                          .3
                                                                                                           30
1.61
                .01
                             6.
                                                       : sl2 - HS-parameter
                                                                                                           31
                .02
                             .4
                                          .05
.15
1.0
                .4
                             1.
                                          .2
                                                       : clmp2 - foliage clumping parameter
                                                                                                           32
0.60
                                          .3
                                                       : szz - vertical regularity
                                                                                                           33
                0.
                             2.
                                                       : eln2 - -ln(1 - eps)
3.99
                .0
                             4.5
                                          .5
                                                                                                           34
                                                                                                           35
                                          20.
57.34
                0.
                             90.
                                                       : thm2 - modal leaf angle
.90
                .6
                             1.3
                                          .2
                                                       : n_ratio2
                                                                                                           36
76.0
                             120.
                                          30.
                                                       : SLW2(q/m^2)
                                                                                                           37
                60.
1.315
                                          .2
                                                       : N2 (PROSPECT)
                                                                                                           38
                1.
                             2.8
                                                       : leaf optics model, upper layer
'prospect'
                                                       : # of leaf components
                                                                                                           39
5.0
                             30.
                                          10.
                                                  'waterb.dat' : c1, % of SLW, component 1
                3.
                                                  'chlorp3.dat' : c2, % of SLW, component 2
                                                                                                           40
.633
                .3
                             .8
                                          .2
                                                  'anthocyanin.dat' : c3, % of SLW, component 3
                                          2.
                                                                                                           41
17.60
                0.
                             40.
                                                  'drymatter.dat' : c4, % of SLW, component 4
81.80
                74.
                             99.8
                                          20.
                                                                                                           42
                                                                                                           49
                .01
                                          .3
                                                       : LAI1_ground, lower layer
0.53
                             1.1
                                                                                                           50
.15
                .02
                                          .05
                                                       : sl1 - HS-parameter
                             .4
                                                       : clmp1 - foliage clumping parameter
                                                                                                           51
0.6
                .4
                             1.
                                          .2
                                          .5
                0.
                             4.5
                                                       : eln1 - -ln(1 - eps)
                                                                                                           52
3.0
                             90.
                                          20.
                                                       : thm1 - modal leaf angle
90.
                0.
                                                                                                           53
```

0.9	.6	1.3	.2	: n_ratio1	54	
65.29	60.	120.	30.	$: \overline{\mathrm{SLW}}1(g/m^2)$	55	
1.0053	1.	2.5	.2	: N1 (PROSPECT)	56	
'prospect'				: leaf optics model, lower layer		
5				: # of leaf components		
85.23	60.	120.	50.	'waterb.dat' : c1, % of SLW, component 1	57	
.40	.3	.8		'chlorp3.dat' : c2, % of SLW, component 2	58	
0.44	.3	.8	.2 .2	'anthocyanins.dat' : c3, % of SLW, component 3	59	
98.72	94.	99.8	20.	'drymatter.dat' : c4, % of SLW, component 4	60	
.44	.0002	4.	.1	'cellp3.dat' : c5, % of SLW, component 5	61	
'soil.dat'		45.		: file of Price' vectors, th*		
1.13	0.95	1.4	.1	: s1 - soil parameters	67	
.0	1	.1	.02	: s2	68	
.0	05	.05	.02	: s3	69	
.0	04	.04	.02	: s4	70	
* !!! the fo	ollowing lines	si are not req	uired for d	lirect problem !!! ***		
'powell'				: name of the optimization subroutine		
5000	1	100	100	: nfmax, itmax, itbr, nbrak		
1.E-9	1.E-7	1.E-13	1.E-8	: zeps, tolbr, tiny, ftolp		
1.	.5	2.	.2	: alpha, beta, gamma, dx		
2	20.			: n, at		
1	7			: ll(i)		
486.	.0271	.02		: th_Sun=38.		
572.	.2744	.1		: th_Sun=38.		
661.	.2806	.1		: th_Sun=38.		
838.	.0228	.02		: th_Sun=38.		
1677.	.2702	.1		: th_Sun=38.		
2217.	.2765	.1		: th_Sun=38.		

lambda reflectance delta_rho

'RAMI KS' : data set name
49 : stand age
7 : # of size classes

The number of tree classes, the max number of tree classes is 10.

*** files of refractive index and other tree classes *** – a comment line 'refrind.dat' 'algl1' 'potr1' 'tico2' 'bepe2' 'algl2' 'piab3'

This line cannot be omitted in the case of one tree class.

1 : *ijob*: 0-single, 1-spectrum, 2-ad,

3,4-inversion (3-relat., 4-abs. differences)

The job control parameter ijob:

- 0 calculate a single value of canopy reflectance
- 1 calculate reflectance spectrum for the given Sun and view angles
- 2 calculate reflectance angular distribution at given azimuth
- 3 inversion of the FRT model, relative differences in the merit function
- 4 inversion of the FRT model, absolute differences in the merit function

The next group of parameters are the input parameters of the 6S model (Vermote et al., 1997).

4 .80 .17 0. .03 : iaer, c(i) - aerosol data (6S)

```
iaer, c(i) – aerosol model (6S)
      -1 BRDF, no sky radiation
          no aerosols
      0
      1
          continental model
          maritime model
      3
          urban model
          enter the volumic percentage of each component c(i)
      c(1) – fraction of dust-like
      c(2) –
                         water-soluble
      c(3) –
                         oceanic
      c(4) -
                         soot
0.
             .06
                          : visibility v, km, and/or tau_aerosol(550 nm) if v \le 0
37.6
                                                     : Sun zenith
0.
                          7.
                                        : view nadir angle, its increment, and azimuth angle.
       The azimuth angle is counted from the principal plane, the allowed range is [0..180].
                                                     : # of spectral bands, spectrum step
6
             -1.
      Number of spectral bands; the spectrum step d\lambda. If d\lambda < 0 then give the list of
      spectral bands on the next line. Otherway, the spectrum has the fixed increment
      and only the first wavelength is read.
486.
             571.
                          650.
                                                     : spectral bands
                          xmax
\mathbf{x0}
             xmin
                                        dx
                                                     i - a comment
'KS'
             : tree species, a character string for information purposes only
t_elli
                                                     : crown form,
       A logical parameter of crown shape: t – ellipsoid, f – cylinder+cone
      Starting from the next row there are four parameter values in each line. Only the
      first value (x0) is required for the direct run, x min and x max are the boundary
      values of the parameter in the inversion run. The fourth column, dx, is the tolerance
```

of the parameter in the inversion, Eq. (23). The first value (x0) serves as an initial guess and as an expert estimate $x_{e,j}$, Eq. (23) of the parameter value in the inversion. There is the parameter number in the vector of parameters in the last column. Only the first column ($x\theta$) is needed in the direct mode (ijob = 0, 1, 2)

.0399	.0001	.08	.08	: stand density, m^{-2}
	Number of trees	s for the gi	ven tree class	
26.5	10.	25.	5.	: tree height, m
9.0	.5	10.	9.	: crown l, m; ell con
	Crown length (e	ellipsoid) o	r length of the o	conical part of the crown (cylinder+cone)
0.	0.	10.	1.	: cylinder
	Length of the cy	ylindrical p	oart of crown	
1.7	.2	5.	.3	: crown radius, m

Crown radius - the horizontal semiaxis of ellipsoid or the base radius of the cone

20.7 2. 25. 5. : trunk diameter, cm

DBH – trunk diameter at the breast height.

 3.014
 1.1
 3.
 8.
 : m - total dry leaf weight, kg/tree

 76.
 30.
 120.
 60.
 : SLW - leaf weight per area, g m-2

0. .0 4.5 .5 : eln3 - -ln(1 - eps)

the eccentricity parameter of LAD

53.57 0. 90. : thm3 - modal leaf angle

 .2
 .05
 .6
 .2
 : shoot length, lm

 .15
 .01
 1.
 .05
 : BAI/LAI ratio

 1.48
 .6
 2.8
 .05
 : tree distr. param. GI_i

Grouping index, $GI_j = 1$ – a random stand, $GI_j < 1$ – a clumped stand, $GI_j > 1$ – a regular stand.

.0 .1 .6 .05 : H-G asymmetry (phase function)

If this parameter is ≤ 0 , then the Ross-Nilson area scattering phase function of plate medium is used.

.95 .6 1. .2 : shoot shading coef

Shoot shading parameter κ , accounts for the decrease of effective G-function due the mutual shading of leaves (needles), $\kappa = 1$ – no mutual shading.

 1.
 .6
 1.2
 .2
 : refr. ind. ratio

 1.6016
 1.6
 2.8
 .5
 : leaf str. param. - - PROSPECT N

Refraction index of the leaf surface wax is calculated from the tabulated value by multiplying to this coefficient.

40. 20. 60. 5. : d_cell Liberty **0.03 0.01 0.06 .02** : a cell Liberty

'birchbr1.dat' : file of branch reflectance
'birchtr1.dat' : file of trunk reflectance
'prospect' : leaf optics model, options are 'prospect' and 'liberty'.

3 : # of leaf components n_{comp}

In the next n_{comp} lines the percent concentration of the component and the file name of the component absorption spectrum for every component is listed. Despite in the direct mode only the first parameter x(0) is used, the filename must be at the fifth position in the line. The components 20-29 of the vector of parameters are reserved for the leaf biochemical constituents - the tree layer, components 39-48 - the upper layer of ground vegetation, and components 57-66 - the lower layer of ground vegetation, so the maximum number of leaf biochemical components is 10. The components 18 and 19 of the vector of parameters are the LIBERTY parameters cell diameter and amount of inter-cell air, for the tree layer. In ground vegetation only the Prospect model is accepted.

 144.
 50.
 320.
 50. 'waterb.dat'
 : c1, % of SLW, model component 1

 0.60
 .3
 1.
 .2 'chlorp3.dat'
 : c2, % of SLW, model component 2

 54.65
 40.
 99.9
 20. 'drymatter.dat'
 : c3, % of SLW, model component 3

The next group of parameters are the input parameters of the two-layer CR model (Kuusk, 2001).

24

**** Ground vegetation ***				mment
1.61	.01	6.	6.	: LAI2_ground, upper layer
.15	.02	.4	.4	: sl2 - HS-parameter
1.0	.4	1.	.2	: clmp2 - foliage clumping parameter
1.2	0.	2.	.3	: szz - vertical regularity
3.99	.0	4.5	.5	: eln2ln(1 - eps)
53.34	0.	90.	20.	: thm2 - modal leaf angle
.9	.6	1.3	.2	: n_ratio2
76.0	60.	120.	30.	$: SLW2(g/m^2)$
1.315	1.	2.8	.2	: N2 (PROSPECT)
'prospect'				: leaf optics model, upper layer
4				: # of leaf components
5.	1.	120.	50.	'waterb.dat' : c1, % of SLW, component 1
.633	.3	.8	.2	'chlorp3.dat' : c2, % of SLW, component 2
17.60	0.	40.	20.	'anthocyanins.dat' : c3, % of SLW, component 3
81.80	60.	99.8	20.	'drymatter.dat' : c4, % of SLW, component 4
0.53	.01	1.	.3	: LAI1_ground, lower layer
.15	.02	.4	.05	: sl1 - HS-parameter
0.6	.4	1.	.2	: clmp1 - foliage clumping parameter
3.0	.0	4.5	.5	: eln1ln(1 - eps)
90.	0.	90.	20.	: thm1 - modal leaf angle
.9	.6	1.3	.2	: n_ratio1
65.29	60.	120.	30.	: $SLW1(g/m^2)$
1.0053	1.	2.5	.2	: N1 (PROSPECT)
'prospect'				: leaf optics model, lower layer
5				: # of leaf components
85.23	60.	120.	50.	'waterb.dat' : c1, % of SLW, component 1
.4	.3	.8	.2	'chlorp3.dat' : c2, % of SLW, component 2
0.44	.3	.8	.2	'anthocyanins.dat' : c3, % of SLW, component 3
98.72	94.	99.8	20.	'drymatter.dat' : c4, % of SLW, component 4
.44	.0002	4.	.1	'cellp3.dat' : c5, % of SLW, component 5
'soil.dat'	45.			: file of Price' vectors, th*
1.1309	.05	.4	.07	: s1 - soil parameters
.0	1	.1	.02	: s2
.0	05	.05	.02	: s3
.0	04	.04	.02	: s4

The next group of parameters are optimization parameters. The only working option for the optimization subroutine is 'powell'.

'powe	ell'		: name o	f the optimization subroutine				
5000	1	100	100	: nfmax, itmax, itbr, nbrak				
	nfmax – the m	ax number of	calculations	s of merit function				
	itmax – the max number of iterations							
	itbr — the max	x number of i	terations in	the subroutine brent				
	nbrak – number of iterations in the subroutine mnbracket							
1.E-9	1.E-7	1.E-13	1.E-8	: zeps, tolbr, tiny, ftolp				
1.	.5	2.	.2	: alpha, beta, gamma, dx				

```
2 10. : n, at n - the number of model parameters subject to inversion at - penalty – the weight w_i, Eq. (23), at = 10. is ok! 1 : ll(i)
```

The key vector ll(n), here the ordinal numbers of free model parameters which are subject to estimation are listed.

The next lines are the reflectance values for inversions ijob=3 and ijob=4: for every spectral channel. The number of reflectance/transmittance values should be n_chnl .

486.	.0271	.02	: th_Sun=38.
572.	.2744	.1	: th_Sun=38.
661.	.2806	.1	: th_Sun=38.
838.	.0228	.02	: th_Sun=38.
1677.	.2702	.1	: th_Sun=38.
2217.	.2765	.1	: th_Sun=38.

B.2 A sample file of the second tree class

'RAMI K	S nine'			: data set name	
49	is, pine			: stand age	
7					
	££		4 1	: # of size classes	
			ner tree class		
			'bepe2' 'algl		
0				, 3,4-inversion (3-relat., 4-abs. differences)	
4	.80 .17	.0 .03	: 1aer, c(1) -	- aerosol data (6S)	
0.	.06			: v, tau_aer(550) - visibility (6S)	
37.6				: Sun zenith	
0.	2.	7.		: view nadir angle, its increment, and view azi	muth angle
6	-1.		: # of spect	tral bands and spectrum step	
486. 571.	650. 838. 10	577. 2217.		: spectral bands (TM)	
x0	xmin	xmax	dx		i
'MA'				: species	
t_elli				: crown form	
.0099	.0001	.08	.02	: stand density, m^{-2}	1
20.5	10.	30.	5.	: tree height, m	2
4.0	.5	10.	9.	: crown l, m; ell con	2 3
0.	.5	10.	1.	: cylinder	4
1.7	.2	5.	.3	: crown radius, m	4 5 6 7
20.7	2.	25.	5.	: trunk diameter, cm	6
1.014	1.1	5.	8.	: m - total dry leaf weight, kg/tree	7
120.	30.	120.	60.	: SLW - leaf weight per area, g m-2	8
0.	.0	4.5	.5	: eln3ln(1 - eps)	9
53.57	0.	90.	20.	: thm3 - modal leaf angle	10
.2	.05	.6	.2	: shoot length, m	11
0.15	.01	1.	.05	: BAI/LAI	12
1.3	.6	2.8	.05	: tree distr. param. GI_i	13
.0	.0	.6	.05	: H-G asymmetry (phase function)	14
.95	.6	1.		: shoot shading coef	15
.9	.6	1.2	.2 .2 .5 5.	: refr. index ratio	16
1.8	1.2	2.8	.2	: leaf str. param PROSPECT N	17
40.	20.0	60.	. <i>5</i>	: d_cell Liberty	18
0.03	.01	0.06	.02		19
		0.00	.02	: a_cell Liberty : file of branch reflectance	19
'pinebr1.d					
'pinetr1.da	at			: file of trunk reflectance	

'prospec	t'			: leaf optics model	
3				: # of leaf components	
144.0	50.	320.	50.	'waterb.dat' : c1, % of SLW, component 1	20
0.60	.3	1.	.2	'chlorp3.dat' : c2, % of SLW, component 2	21
54.65	34.	99.8	20.	'drymatter.dat' : c3, % of SLW, component 3	22

B.3 Bark and trunk reflectance spectra

The files of bark and trunk reflectance spectra are simple two-column files of 2001 rows, where the first column is wavelength, nm, and the second column is reflectance. The wavelength interval is 1 nm.

C A sample output file

```
Forest Reflectance Model FRT23 V.04.2025 by A. Kuusk, T. Nilson
 Input parameters:
 RAMI KS
                                               Stand Age =
                                                               49
##
    ijob =
    Sun zenith =
                   36.0 View azimuth =
                                           0.0 View zenith step =
    Wavelength = 671.9 \text{ nm}
    7 tree class(es)
    Files of parameters of other tree classes:
                                       potr1
                              algl1
                                                 tico2
                                                           bepe2
                                                                     alg12
#
                               1
                                        2
                                                3
                                                         4
                                                                  5
                                                                           6
#
                               KS
                                        LM
                                                ΗB
                                                         PΝ
                                                                  KS
                                                                          LM
#
                               ellips
                                       ellips
                                                ellips
                                                         ellips
                                                                  ellips
                                                                          ellips
#
                              0.0399
                                               0.0079
       stand density, m-2
                                       0.0176
                                                        0.0264
                                                                 0.0066
                                                                         0.0020
    2
                              26.500
                                                        20.200
                                                                 17.900
                                       23.400
                                               26.760
                                                                         17.500
       tree height, m
    3
       ell. or cone
                                      15.000
                               9.000
                                                8.220
                                                        13.000
                                                                  5.600
                                                                          8.500
                                                                          0.000
                               0.000
                                        0.000
                                                0.000
                                                         0.000
                                                                  0.000
       cylinder, m
       crown radius, m
    5
                               1.700
                                        2.107
                                                2.100
                                                         2.130
                                                                  1.100
                                                                          1.500
#
                              20.700
                                       22.400
                                               21.600
                                                        14.500
                                                                 10.500
       trunk d, cm
                                                                         13.100
    7
       total leaf weight
                               3.014
                                        2.995
                                                5.768
                                                         1.640
                                                                  0.659
                                                                          0.770
                                                        25.500
       leaf weight, g m-2
                              76.000
                                       77.400
                                               76.200
                                                                 76.000
                                                                         77.400
#
    9
       eln
                               0.000
                                        3.600
                                                5.500
                                                         5.700
                                                                  0.000
                                                                          3.600
  10
                              53.570
                                        6.800
                                                8.190
                                                                 53.570
       thm
                                                         6.300
                                                                          6.800
                               0.200
                                        0.150
                                                                  0.200
#
   11
       shoot size, m
                                                0.200
                                                         0.100
                                                                          0.150
#
   12
       BAI/LAI
                               0.150
                                        0.220
                                                0.100
                                                         0.080
                                                                  0.150
                                                                          0.220
#
   13
       tree distr. param.
                               1.200
                                        1.480
                                                1.480
                                                         1.200
                                                                  1.480
                                                                          1.480
   14
       g_H-G
                               0.000
                                        0.000
                                                0.000
                                                         0.000
                                                                  0.000
                                                                          0.000
   15
       shoot shading coef
                               0.950
                                        0.950
                                                0.950
                                                         0.950
                                                                  0.950
                                                                          0.950
  16
       refr. ind. ratio
                               0.900
                                                0.900
                                        0.900
                                                         0.900
                                                                  0.900
                                                                          0.900
       leaf str.par
  17
                               1.658
                                        1.762
                                                1.548
                                                         1.543
                                                                  1.658
                                                                          1.762
  18
       D_cell, mcm
                              40.000
                                       40.000
                                               40.000
                                                        40.000
                                                                 40.000
                                                                         40.000
                                        0.030
       i-cell air
                                                         0.030
  19
                               0.030
                                                0.030
                                                                  0.030
                                                                          0.030
                                     aldertr1.dat
 bark refl. files: birchbrl.dat
                                                      oambr1.dat
                                                                    oambr1.dat
 trunk refl. files birchtrl.dat
                                     aldertr1.dat
                                                      oamtr1.dat
                                                                    oamtr1.dat
 Leaf models:
                    prospect
                               prospect
                                         prospect prospect
                                                               prospect
                                                   4
   # of leaf comp-s:
                                                            3
 20
           waterb.dat
                                     waterb.dat
                        waterb.dat
                                                  waterb.dat
                                                               waterb.dat
           144.0000
                        147.8000
                                     56.8100
                                                   103.2000
                                                               144.0000
#
   21
           chlorp3.dat chlorp3.dat chlorp3.dat chlorp3.datat
#
              0.6000
                        0.8772
                                     0.2778
                                                   0.2890
                                                                0.6000
#
   22
           drymatter.dat drymatter.dat drymatter.dat
           54.6500
                           71.2900
                                          18.5700
                                                         102.9000
                                                                        54.6500
   23
                        base.dat
                                     base.dat
                                                               0.0000
                                                                             0.0000
           0.0000
                        167.5000
                                                  0.0000
                                     20.5300
```

```
# *** Ground vegetation, upper layer,
                                                                             lower layer
     30 ground LAI2 1.610
                                                                                   0.530
           leaf size
                                                       0.150
                                                                                      0.150
#
     31
                                                        1.000
                                                                                      0.600
#
           clmp
     33
                                                       0.600
           SZZ
#
     34
           eln
                                                       4.000
                                                                                      3.000
                                                      57.340
     35
           t.hm
                                                                                     90.000
          n_ratio
                                                       0.900
     36
                                                                                      0.900
                                                                                     65.290
     37 SLW
                                                      76.000
     38 leaf str.par
                                                       1.315
                                                                                      1.005
      Leaf model: prospect
                                                        4
     39 # of leaf components:
           waterb.dat
                                                      5.000
                                                                     waterb.dat
chlorp3.dat
                                                                                                              85.230
     39
     40
                 chlorp3.dat
                                                      0.633
                                                                                                              0.400
                                                                                                               0.440
     41
                 anthocyanins.dat
                                                      17.600
                                                                       anthocyanins.dat
    42
                                                      81.800
                                                                                                              98.720
               drymatter.dat
                                                                        drymatter.dat
#
    43
                                                                          cellp3.dat
                                                                                                              0.440
   File of Price' vectors: soil.dat
   Sun angle of the soil reflectance:
                                                                   45.0
           s1_soil
                                                      1.1309
           s2
                                                      0.0000
#
     68
           s3
                                                      0.0000
#
     69
     70
          s4
                                                      0.0000
  *** Results:
                                                                                         3
                                                    1
                                                                                                          4
                                                                                                        PN
                                                                                                                             KS
                                                   KS
                                                                    LM
                                                                                      HB
                                                  ellips
                                                                    ellips ellips ellips
                                                                                                                             ellips
                                                                     0.018 0.000
0.018 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.
                                                   0.040
                                                                                        0.008
                                                                                                                            0.007
                                                                                                          0.026
       stand density, m-2
                                                 26.500
                                                                                                         20.200
                                                                                                                           17.900
        tree height, m
                                                   9.000
#
        ell. or cone
                                                                    15.000
                                                                                                         13.000
                                                                                                                             5.600
                                                                   0.000
        cylinder, m
                                                                                                        0.000
#
                                                   0.000
                                                                                        0.000
                                                                                                                            0.000
                                                  1.700
20.700
#
        crown radius, m
        trunk d, cm
                                                                      2.107
                                                                                         2.100
                                                                                                           2.130
                                                                                                                             1.100
                                                                                    21.600
                                                                    22.400
                                                                                                         14.500
#
                                                                                                                           10.500
        lf_wght/tr&tot_m-2
                                                   3.014
                                                                     2.995
                                                                                        5.768
#
                                                                                                          1.640
                                                                                                                            0.659
                                                  76.000
                                                                     77.400
                                                                                       76.200
                                                                                                         25.500
                                                                                                                           76.000
#
        SLW, g m-2
                                                    0.000
                                                                     3.600
                                                                                        5.500
                                                                                                         5.700
#
        eln
                                                                                                                            0.000
                                                  53.570
        thm
                                                                      6.800
                                                                                        8.190
                                                                                                          6.300
                                                                                                                           53.570
#
        shoot size, m
                                                   0.200
                                                                     0.150
                                                                                        0.200
                                                                                                          0.100
                                                                                                                            0.200
                                                   0.150
                                                                    0.220
                                                                                        0.100
                                                                                                          0.080
                                                                                                                            0.150
       BAI/LAI
       tree distr. param.
                                                   1.200
                                                                     1.480
                                                                                        1.480
                                                                                                          1.200
                                                                                                                            1.480
                                                   0.000
                                                                    0.000
                                                                                        0.000
                                                                                                          0.000
                                                                                                                            0.000
                                                                    0.950
                                                                                                          0.950
       shoot shading coef
                                                  0.950
                                                                                        0.950
                                                                                                                            0.950
                                                  0.900
                                                                    0.900
       refr. ind. ratio
                                                                                        0.900
                                                                                                          0.900
                                                                                                                            0.900
        leaf str.par
                                                   1.658
#
                                                                      1.762
                                                                                        1.548
                                                                                                          1.543
                                                                                                                             1.658
                                                  40.000
                                                                     40.000
                                                                                       40.000
                                                                                                         40.000
                                                                                                                           40.000
#
        D_cell, mcm
                                                                                    0.030
        i-cell air
                                                  0.030
                                                                     0.030
                                                                                                         0.030
#
                                                                                                                            0.030
      bark refl. files: birchbr1.dat aldertr1.dat oambr1.dat oambr1.dat
trunk refl. files birchtr1.dat aldertr1.dat oamtr1.dat
     waterb.dat
                                   waterb.dat
                                                              waterb.dat
                                                                                          waterb.dat
                                                                                                                   103.2000
                                    144.0000
                                                               147.8000
                                                                                          56.8100
                                                              chlorp3.dat
                                    chlorp3.dat
                                                                                          chlorp3.dat
                                                                                                                   chlorp3.dat
                                                                 0.8772
                                        0.6000
                                                                                            0.2778
                                                                                                                        0.2890
                                    drymatter.dat
                                                               drymatter.dat drymatter.dat drymatter.dat
                                      54.6500
                                                               71.2900
                                                                                          18.5700 102.9000
                                                             base.dat
167.5000
                                                                                          base.dat
      0.0000 167.5000 20.
rl_eff = 0.1179 tl_eff = 0.0831 rsl = 0.1160
                                                                                                                      _ 0.0000
                                                                                          20.5300
#
       leaf area density 0.692 0.325 1.047 0.536
                                                                                                                        0.672
                         4.667
       Total LAI
      Total BAI
                                0.600
```

```
crown closure = 1.150
                                                   canopy closure = 0.749
 Warning!: canopy closure (CC) > crown closure (CR)
            class, CC, CR: 7 0.2095E-01 0.1764E-01
#
#
#
   *** Ground vegetation, upper layer,
                                               lower layer
   ground LAI2, LAI1
                             1.610
                                               0.530
    leaf size
                             0.150
                                               0.150
                             1.000
                                               0.600
   clmp
                             0.600
#
   SZZ
    eln
                             4.000
                                               3.000
                            57.340
                                              90.000
   thm
   n_ratio
                             0.900
                                               0.900
                            76.000
                                              65.290
   SLW
                             1.315
                                               1.005
   leaf str.par
#
   Leaf model: prospect
    # of leaf components:
                             5.000
       waterb.dat
                                       waterb.dat
                                                             85.230
#
#
       chlorp3.dat
                             0.633
                                       chlorp3.dat
                                                             0.400
#
                            17.600
                                       anthocyanins.dat
       anthocyanins.dat
                                                             0.440
#
       drymatter.dat
                            81.800
                                       drymatter.dat
                                                             98.720
                                       cellp3.dat
                                                             0.440
   s1_soil
#
                            1.1309
   s2
                            0.0000
#
   s3
                            0.0000
    s4
                            0.0000
                                            0.0
    Sun zenith = 36.0 View azimuth =
                                                  View zenith step =
                                                                        2.0
   Wavelength = 671.9 nm
                                  S'/Q =
                                           0.9
   CaCl:
            0.7485
                                  CrCl:
                                           1.1503
                 r_grnd
0.01955
# thv
        refl
                           rcr1
                                              rdif
                                                       b_down
                                                                  qfr
                                    rgr1
        0.03906
                           0.03066
                                    0.00000
                                              0.01028
                                                       0.02861
                                                                  0.00000
 -80.0
-78.0
        0.03633
                 0.01906
                           0.02794
                                    0.00000
                                              0.01011
                                                       0.02850
                                                                  0.00000
-76.0
                           0.02596
        0.03430
                 0.01874
                                    0.00000
                                              0.00992
                                                       0.02844
                                                                  0.00000
        0.03262
                                                       0.02839
-74.0
                 0.01856
                           0.02437
                                    0.00000
                                              0.00974
                                                                  0.00000
-72.0
       0.03128
                0.01847
                           0.02313
                                    0.00000
                                              0.00956
                                                       0.02837
                                                                  0.00000
  72.0
        0.02643
                 0.01296
                           0.01797
                                    0.00000
                                              0.00956
                                                       0.02824
                                                                  0.00000
 74.0
        0.02821
                 0.01357
                           0.01967
                                    0.00000
                                              0.00974
                                                       0.02833
                                                                  0.00000
 76.0
        0.03041
                 0.01434
                           0.02182
                                    0.00000
                                              0.00992
                                                       0.02845
                                                                  0.00000
                                    0.00000
                                              0.01011
 78.0
        0.03322
                 0.01531
                           0.02462
                                                       0.02860
                                                                  0.00000
 80.0 0.03699
                 0.01651
                           0.02845
                                    0.00000
                                             0.01028
                                                       0.02882
                                                                  0.00000
```

D Description of the subroutines

D.1 Subroutines of general use

D.1.1 Subroutine *stands*

reads input data

D.1.2 Subroutine *out0*

prints parameter values to the output file

D.1.3 Subroutine *out1*

prints the results of the direct run to the output file

D.1.4 Subroutine *out2*

prints the results of inversion to the output file

D.1.5 Subroutine *frtsv*

frtsv(..) is the procedure which performs the single direct run of the model.

D.1.6 Function func (funcf.f)

In the direct mode the function *func* extracts the model parameters from the vector of parameters and provides to the subroutine *frtsv(...)* for a single direct run.

In the inverse mode the function *func* checks that the model parameters are in the allowed range, scales the parmeters subject to the estimation, and computes the merit function.

D.1.7 Subroutines iterats, rtsafe and funcd

Computes the Fisher's grouping index GI_j , Eq. (10) from the given structure parameter $c_j(\theta_1)$. The Newton-Raphson method is used, Press et al. (1992), Algorithm 9.4.

D.1.8 Subroutines cubell9, cubcirc and gauleg

Provide quadrature (cubature) knots and weights to numerical integrations.

D.1.9 Subroutine *rspec*

Reads tabulated spectra – absorption spectra of leaf constituents, stem and branch bark reflectance, Price' vectors *etc*.

D.2 Structure modules

D.2.1 Subroutine strmean

Computes the mean values of structure parameters.

D.2.2 Subroutine *regre*

Regressions for tree parameters. The call of this subroutine is commented out. Such regressions can be used in case some tree parameters are not available.

D.2.3 Subroutine *ggg1*

The Ross-Nilson G-function for elliptical LAD.

D.2.4 Subroutine hetk8s

Calculates gap probabilities in Sun and view directions.

D.2.5 Subroutine gfzx

Calculation of the gap fraction at level zzx in direction thx.

D.2.6 Subroutine *pcrown*

Crown transparency, ellipsoid, at level zzx.

D.2.7 Subroutine *rlips*

Distance from (xi, yj, zk) to crown perimeter in direction thet, phi, ellipsoid.

D.2.8 Subroutine *rcone*

Distance from (xi, yj, zk) to crown perimeter in direction thet, phi, cylinder+cone.

D.2.9 Subroutine int3de

Integrates the bidirectional probability p_{00j} , over the whole tree crown, Eq. (3), ellipsoid.

D.2.10 Subroutine int3dc

Integrates the bidirectional probability p_{00j} , over the whole tree crown, Eq. (3), cone and cylinder.

D.2.11 Subroutine *bgf*2

Bidirectional free lines of sight outside the tree crown.

D.2.12 Subroutine hsc12

Hot-spot correction inside the crown.

D.2.13 Subroutine *pstem*

Probability of sunlit stem.

D.2.14 Subroutine stem

The area of stem longitudinal section.

D.2.15 Subroutine *pelld*

The projection szdx and volume vzdi of the lower part of an ellipsoid.

D.3 Optics modules

D.3.1 Subroutine optmean

Computes the mean and effective values of optical parameters.

D.3.2 Subroutine aground

Computes the directional-hemispherical reflectance rsdgrou and albedo (hemispherical-hemispherical reflectance) rddgrou of ground vegetation.

The double integral over hemisphere which is needed for the hemispherical-hemispherical reflectance of ground vegetation is substituted by an integral over polar angle at the azimuth $\varphi=90^\circ$. The integral is calculated with an Gaussian quadrature.

D.3.3 Subroutine *hetk80*

Single scattering radiance of tree crowns, up and down.

D.3.4 Subroutine *diffor*

Computes diffuse fluxes of multiple scattering and of scattered diffuse sky radiation.

Diffuse fluxes are computed in two-stream approximation (Bunnik, 1978; Kuusk, 2001).

D.4 Reflectance of ground vegetation (rmsub.f)

```
Subroutines

smcrm
biz2
gamma
gleaf
gmfres
soil
dif2
layer
rhoc1
skylspec
```

constitute the two-layer homogeneous canopy reflectance model ACRM. The full description of algorithms is published by Kuusk (1994, 1995a,b, 2001).

D.5 PROSPECT - the leaf optics model

```
Subroutines

prospect
tav
s13aaf
constitute the leaf optics model by Jacquemoud and Baret (1990).
```

D.6 LIBERTY - the leaf optics model

```
Subroutines

liberty

fresnel

constitute the leaf optics model by Dawson et al. (1998).
```

D.7 Atmosphere radiative transfer model 6S (sixsd.f)

General description of the 6S model is published by Vermote et al. (1997). The detail description of 6S modules is in (Vermote et al., 1994). For the calculation of incoming fluxes are used the modules

sixd abstra aeroso atmref chand csalbr discom discre dust gauss interp iso kernel ocea oda550 odrayl os print_error scatra soot specinterp trunca us62 vegeta wate

D.8 Optimization modules

The Powell's method (Press et al., 1992), Algorithm 10.5 is used for the minimization of the merit function Eq. (16). The corresponding subroutines are

powell linmin mnbrak function brent

References

- Bunnik, N.J.J., 1978. The Multispectral Reflectance of Shortwave Radiation by Agricultural Crops in Relation with their Morphological and Optical Properties, Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, 175 pp.
- Dawson, T.P., Curran, P.J., and Plummer, S.E., 1998. LIBERTY modeling the effects of leaf biochemical concentration on reflectance spectra. *Remote Sens. Environ.* 65:50-60.
- Jacquemoud, S., and Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. *Remote Sens. Environ.* 34:75-91.
- Kuusk, A., 1994. A multispectral canopy reflectance model. Remote Sens. Environ. 50:75–82.
- Kuusk, A., 1995a. A fast, invertible canopy reflectance model, textit Remote Sens. Environ. 51(3): 342-350.
- Kuusk, A., 1995b. A Markov chain model of canopy reflectance. *Agricult. Forest Meteorol.* 76:221–236.
- Kuusk, A., 2001. A two-layer canopy reflectance model. J.Q.S.R.T. 71:1-9.
- Lenoble, J. (Ed.), 1977. Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Vol. I. International Association of Meteorology and Atmospheric Physics, Radiation Commission, Boulder, Co. National Center for Atmospheric Research.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992. *Numerical Recipes in FORTRAN*. *The Art of Scientific Computing*. Cambridge University Press, Cambridge, 963 pp.
- Vermote, E., Tanré, D., Deuzé, J.L., Herman, M., and Morcrette, J.J., 1994. *Second Simulation of the Satellite Signal in the Solar Spectrum (6S). User Guide Version 0*, GSFC, NASA, 183 pp.
- Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J., 1997. Second simulation of the satellite signal in the solar spectrum, 6S An overview. *IEEE Trans. Geosci. Remote Sens.* 35(3):675-686.